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1 Problem 1

a).
dim(h/e*) = J x s/C?

From V =1IR, I = % and V = U/Q, where U is potential energy we get

Q = Volt/Amp = (J/C)/(C/s) = J * s/C*

b). h/e? = 2.6 x 1010

c).
h/e*  hy/&
N

2 Problem 2

a). The n'th radius R, is given by Eqns. 5 —9 5 — 10 and is

R, — nh

Zmea’

where Z is the charge of the nucleus and m is the mass of the particle in question. In our
case and in terms of ay the equation can be written as

m.a 2%0.53 % 10710 )
R = =22 = =1.2x%10"154Y3,
' Zm, 207A i

Thus A = 94.

b). A). We have a moving (and noninteracting) particle. The time dilation effects make
time pass more quickly in the lab frame than in muon’s frame (from the lab’s point of view),
and therefore it’s apparent lifetime will be bigger. B). The particle will see the nucleons as
soon as it enters the nucleus, and therefore should interact very quickly. Thus its apparent
lifetime will be smaller.



3 Problem 3

We want to solve equations
mv?/r = ||

and
mur = nh

in order to find the energy E = Fyr + %va (note that in order for motion to be circular it
must hold that Fy = —|Fp|). Thus

1 n2h?
E, = |F0|T‘n(—1 + 1/2) = —§|F0’(m)1/3

4 Problem 4

a). The acceleration of an electron in a circular orbit is just the centripetal acceleration, i.e.

acccm

2
a=v"/r s

b). Using the fact that a = €2?/(4weghc we get

P 207 ctm?
3nsh
c). At the n'th level, the energy is given by Eq. 5-14 to be
5o —h? _ _m02a2
2ma3n? 2n?
Thus -
mcea”, 1 1
Eiisn="—"—"7—"(—"—)
e 7 Gz (n—|—1)2)

For large n we can taylor expand m in powers of 1/n and neglect all terms but the first

two (we have to keep two because the leading term will cancel with 1/n?). Thus

L= () = (-2t )
n+12 n2'(1+1/n2’  n? e
and we can use this to get
mc?a?
En+1f>n - ng
d).
3n 5
tnt1->n = n+1—>n/Pn = mn

e). Plugging in the appropriate values we get to_~; = 2.8 x 1071%s.



5 Problem 5

a). For circular orbits the momentum is constant and parallel to d;', thus
7{]5~d7":mv*2ﬂr:2ﬂnh

and the conditions are identical.
b). Now only the energy is constant and p = v2mE — m2w2x2. Hence

j{ﬁ dr = /\/QmE — miw2aidr = \/QmE/ V1 — A222dz,

where A? = mw?/(2F) and we can evaluate the integral by trig substitution Az = sin#.

Then
v/ 2mE

- 1
fﬁ. dT’ = m /C082 Qd@ = 1+ COS 29))d0

Since we are integrating over a complete period the limits of 8 are 0 and 27. Thus

. 72mE  27E

2 — N . —=
mnh p-dr T -

and
FE = nhw

c). For this particle there is no potential energy and as a result |p| = v2mE. Since the
particle travels a distance of 2L during a complete cycle

f 7 dr = 2LV2mE — 2xnh

and )
m2h*n?

2m L2

6 Problem 6

Here we use the equations on page 577 to compute the integrals. First,

<2’ >= /¢*x277/)dx = 02/ P dy = C%/ma®/2.

—0o0

Also, p = —ihd% and therefore

2 0 2,2
<p?>= —hz/z/) d w = —h202/ (=1/a* — z/a*)e /" dx = C*h*\/7 /a,



where we used the fact that ze=**/%" is an odd function and therefore [*° ze™*"/%dz = 0.

Furthermore, C' can be obtained from the normalization condition; i.e.
1= /w*wdx = CQ/ ey = C*\/ra.
Combining the equations we get

<2’ >< p? >= C*'W’rad®/2 = h*/2

7 Problem 7
a). Once again p = —ih%, and therefore

d
—wdx.

I:—e<v>:—e/m<p>:—ieh/m/oo1/1*d
—00 T

To show that I is real, we must show that I* = I.

00 du*
I = ieh/m/ " f dz.
—00 X

We now use the fact that ¢ (oo,t) = ¥(—o0,t) = 0, which follows from normalizability, and
get

0 = (00, 1 (00, )—(~o0, i (=o0,1) = [ W gy [* 8 gy [™ e W gy — g

—0o0 dz

Thus )
I = —ieh / Wie =1
ieh/m _OO@D 75

b). Using the fact that 1/i = —i we get

Ce<u> [2—e<u>t /2:(1+1*)/2:‘6h/°°(¢d‘”* —wflx)dx.

2im J-oo ' dx

8 Problem 8

Since v satisfies the time independent SE,

d?i 2m
a2 —?(E —U(z))y
and since U(x) is real
d*yp* 2m .
dz —?(E Ulz))y



We can use these relations to state that

4 _ d2¢*¢ RGN
de  dx? dx?

can also be written as
d  2m

. 2m .
dr 12 (B —=U(z)y*y + ?(E— U(x))y* = 0.



